Why do Android phones have more cores than computers?


Question

Laptops have usually at most four cores, and dualcores are probably more common. I have recently switched from quadcore to dualcore and I can confirm there is a limited number of usecases for quadcore, even with CPU intensive tasks.



On the other hands, at mobile phones, quadcores, hexacores and octacores seem to be common. Why? What tasks can utilize them?



I understand that big.LITTLE can be a part of the answer. That is, the main benefit of so many cores is not the ability to use all of them simultaneously, but rather using a core with power consumption appropriate for the current workload. However, for example, the Snapdragon 625 has eight Cortex-A53 cores, which does not seem to be a case for big.LITTLE.



Maybe the ARM architecture has a lower point of optimal performance per watt. That is, having a single core tuned for optimal performance per watt results in a lower performance on ARM than on Intel. So, more cores are used in order to deliver the performance. This is just a hypothesis.



But even in this case, I don't see what workload can efficiently use, say, eight cores on a mobile phone. On laptops, I can imagine a few like full (non-incremental) compilation of a project. But on phones?




  • Games can be performance-hungry, but they usually require GPU performance rather than CPU, don't they?

  • Theoretically, multiple cores could speed up Android Lollipop/Marshmallow AOT compilation when installing or when upgrading (i.e., the phase “Optimizing apps 3/121”). I am, however, not sure if this can utilize multiple cores. As far as I remember the code, only one app is being compiled at a time, but maybe there is some parallelism within the compilation process itself.

  • Also Android 7+ could utilize multiple cores when compiling. But since it reportedly compiles when idle and charging, the benefit seems to be rather minimal. At least when one charges the phone overnight – I really don't care if it takes 30minutes or two hours in such a scenario.


Answer

As you've already noted, the big.LITTLE combination strategy (technically, HMP, Heterogeneous Multi-Processing clusters) is the primary reason for so many (and sometimes overwhelmingly many) cores. A mobile device often runs into multiple scenarios, both heavy load and light load ones included.



An extreme consumer-class example is MediaTek's Helio X20, which has 2 performance-oriented A72 cores, 4 balanced A53 cores, plus 4 energy-efficient A35 cores. That's very flexible throughout different usage cases. However, I think 8 cores 2 clusters is usually enough.



There's also another desktop-like example, Qualcomm's Snapdragon 800 series (S 800, S 801, and S 805). There are only 4 cores of the same microarchitecture in each SoC, with 2 clocked higher and 2 clocked lower. Qualcomm made these SoCs because they were very confident of their own microarchitecture (Krait 400 and Krait 450).



For games, even if they seemingly demand GPU performance rather than CPU, they still put a heavy load on the CPU. A GPU cannot work alone without something else supplying it with data to be processed, and that's one of the major jobs that the CPU is doing while you're gaming. In most gaming cases, the GPU only renders graphics, while all other jobs like loading data, resources and assets, and calculating in-game mechanics like the system, environment and physics are done by the CPU. You won't observe a higher frame rate if you upgrade your GPU while sticking to a low-end CPU.



A secondary reason is how Android utilizes CPU resources. Android pretty much makes their own application environment. It uses nothing but codes (and APIs) from Java, but it has its own virtual machine named Dalvik, which was later replaced by ART (API Level 21). APKs have their executable codes in a "neutral" format, much like .class files in Java. Before they're run, the codes get compiled once more into the machine's native instructions[1]. The compilation process is multi-threaded and can utilize multi-cores for a performance boost.

And when an app is running, there are several other processes and mechanics (like the Garbage Collector) that run alongside, or parallel to the app. More cores can let the supportive processes run more efficiently, as well as the main app.

1. If you use a file type identifier, you'll find that "optimized" dex files are in ELF format, while the "neutral" dex files are just in a format of their own.



Another lesser reason is that ARM cores can't work as fast as an Intel x86 chip. The Intel x86 microarchitecture can be dated back to 1976, when the Intel 8086 chip started to be designed, which means that the x86 has developed over a long time. A single modern high-end ARM Cortex-A73 core is only as powerful as an Intel Clarkdale core, taking Core i5-660 as an example (GeekBench, single-core). This is because x86 is a CISC microarchitecture while ARM is a RISC microarchitecture. You surely don't want a phone that becomes laggy with only two or so active apps. More cores will help relieve the pressure. That's why dual-core SoCs are relatively popular only on smart watches. Who needs performance on a smart watch?



Interestingly, more cores will result in less power than a single core at the same load. The relationship between CPU frequency and power consumption is more than linear, so twice the frequency will always result in demanding more than twice, or even 3x or 4x as much power, while delivering less than twice the performance (due to other resource limitations like cache). So 4 cores can easily beat a single core at the same load, providing better performance and simultaneously demanding less power.



Further Reading:




Topics


2D Engines   3D Engines   9-Patch   Action Bars   Activities   ADB   Advertisements   Analytics   Animations   ANR   AOP   API   APK   APT   Architecture   Audio   Autocomplete   Background Processing   Backward Compatibility   Badges   Bar Codes   Benchmarking   Bitmaps   Bluetooth   Blur Effects   Bread Crumbs   BRMS   Browser Extensions   Build Systems   Bundles   Buttons   Caching   Camera   Canvas   Cards   Carousels   Changelog   Checkboxes   Cloud Storages   Color Analysis   Color Pickers   Colors   Comet/Push   Compass Sensors   Conferences   Content Providers   Continuous Integration   Crash Reports   Credit Cards   Credits   CSV   Curl/Flip   Data Binding   Data Generators   Data Structures   Database   Database Browsers   Date &   Debugging   Decompilers   Deep Links   Dependency Injections   Design   Design Patterns   Dex   Dialogs   Distributed Computing   Distribution Platforms   Download Managers   Drawables   Emoji   Emulators   EPUB   Equalizers &   Event Buses   Exception Handling   Face Recognition   Feedback &   File System   File/Directory   Fingerprint   Floating Action   Fonts   Forms   Fragments   FRP   FSM   Functional Programming   Gamepads   Games   Geocaching   Gestures   GIF   Glow Pad   Gradle Plugins   Graphics   Grid Views   Highlighting   HTML   HTTP Mocking   Icons   IDE   IDE Plugins   Image Croppers   Image Loaders   Image Pickers   Image Processing   Image Views   Instrumentation   Intents   Job Schedulers   JSON   Keyboard   Kotlin   Layouts   Library Demos   List View   List Views   Localization   Location   Lock Patterns   Logcat   Logging   Mails   Maps   Markdown   Mathematics   Maven Plugins   MBaaS   Media   Menus   Messaging   MIME   Mobile Web   Native Image   Navigation   NDK   Networking   NFC   NoSQL   Number Pickers   OAuth   Object Mocking   OCR Engines   OpenGL   ORM   Other Pickers   Parallax List   Parcelables   Particle Systems   Password Inputs   PDF   Permissions   Physics Engines   Platforms   Plugin Frameworks   Preferences   Progress Indicators   ProGuard   Properties   Protocol Buffer   Pull To   Purchases   Push/Pull   QR Codes   Quick Return   Radio Buttons   Range Bars   Ratings   Recycler Views   Resources   REST   Ripple Effects   RSS   Screenshots   Scripting   Scroll Views   SDK   Search Inputs   Security   Sensors   Services   Showcase Views   Signatures   Sliding Panels   Snackbars   SOAP   Social Networks   Spannable   Spinners   Splash Screens   SSH   Static Analysis   Status Bars   Styling   SVG   System   Tags   Task Managers   TDD &   Template Engines   Testing   Testing Tools   Text Formatting   Text Views   Text Watchers   Text-to   Toasts   Toolkits For   Tools   Tooltips   Trainings   TV   Twitter   Updaters   USB   User Stories   Utils   Validation   Video   View Adapters   View Pagers   Views   Watch Face   Wearable Data   Wearables   Weather   Web Tools   Web Views   WebRTC   WebSockets   Wheel Widgets   Wi-Fi   Widgets   Windows   Wizards   XML   XMPP   YAML   ZIP Codes